Skip to main content

Study of sampling theorem, effect of undersampling.

 Study of the sampling theorem, the effect of undersampling.


  THEORY:-  

                             The real-life signals that we encounter in our day to day basis       are mostly analog signals. These signals are defined continuously in time and have an infinite range of amplitude values. In order to process these signals to obtain meaningful information, they need to be converted to a format which is easily handled by computing resources like microprocessors, computers etc... The first step in this process is to convert the real-time signal into discrete-time signals. Discrete-time signals are defined only at a particular set of time instances. They can thus be represented as the sequence of numbers with a continuous range of values. 

The process of converting an analog signal (denoted as x(t)) to a digital signal (denoted as x(n)) is called the analog-to-digital conversion (referred to as digitization), usually performed by an analog-to-digital converter (ADC). Here t is the continuous time variable and n is the sequence order. In many applications after the processing of the digital signal is performed, x(n) needs to be converted back to analog signal x(t) before it is applied to an appropriate analog device. This reverse process is called digital-to-analog conversion and is typically performed using a digital-to-analog converter (DAC).

The typical block diagram of an ADC is shown in Fig. 1 below.





The process of digitization consists of first sampling (digitization in time) and quantization (digitization in amplitude). In this experiment, we will study and understand the principle of sampling, while the principle of quantization will be studied in the next experiment. The sampling process depicts an analog signal as a sequence of values. The basic sampling function can be carried out with an ideal  'sample-and-hold' circuit which maintains the sampled signal until the next sample is taken. An ideal sampler can be considered as a switch that periodically opens and closes every T seconds. The sampling frequency (fs in Hertz) is thus defined as

fs=1/T....(1)

The sampled discrete time signal x(nT) , n=0,1,2,.... of the original continuous-time signal x(t) is shown in Fig. 2 below.













In order to represent an analog signal x(t) by a discrete-time signal x(nT) accurately, so that the analog signal can be exactly reconstructed back from the discrete-time signal, the sampling frequency fs must be at least twice the maximum frequency component (fM) of the original analog signal. Thus we have,

fs≥2fm....(2)

The minimum sampling rate is called the Nyquist rate and the above Sampling Theorem is called Shannon's Sampling Theorem. When an analog signal is sampled at fs, frequency components higher than fs/2 fold back into the frequency range [0, fs/2]. This folded frequency components overlap with the original frequency components in the same range and leads to an undesired effect known as aliasing. In this case, the original analog signal cannot be recovered from the sample data.
Consider an analog signal of frequency 1Hz as shown in Fig. 3(a) below. The sampling frequency is 4Hz. The sampled signal is shown in Fig. 3(b), Note that an exact reconstruction of the missing samples is obtained so long as Shannon's Sampling Theorem is satisfied.




Now let's consider, the analog signal of frequency 5Hz as shown in Fig. 4(a) below. The sampling frequency is the same as above, i.e. 4Hz. The sampled signal is shown in Fig. 4(b), Note that the reconstruction of the original analog signal is not possible since the sampling frequency does not satisfy Shannon's Sampling Theorem. In this case, the reconstructed signal has a frequency of 1Hz. The signal of 5Hz is folded back as 1Hz, into the range determined by the sampling frequency leading to the problem of aliasing.



now the in the below fig I will post the result that how the sampling theorem is practically run on the analog real time signal. 









so this is all about the sampling theorem for the continuous time real signal.




Comments

Popular posts from this blog

Electronic Engineer at Thinture Technologies Pvt. Ltd

Hello Dear Readers, Currently, at Thinture Technologies Pvt. Ltd vacancy for Electronic Engineer role. Thinture Technologies Pvt. Ltd. is a vehicle control systems manufacturer, with a primary focus on road speed limitation and GPS-based tracking systems. All of our products are designed in-house from basic circuit designing to firmware, algorithm to PCB designing, online software platforms to mechanical assembly drawings, and standard operating procedures for aftermarket usage. Role Description: This is a full-time on-site role for an Electronic Engineer located in Bengaluru. The Electronic Engineer will be responsible for the day-to-day tasks associated with electronic engineering, including electronics, electrical engineering, circuit design, testing, and more. Qualifications: Strong electronic engineering skills Sound knowledge of circuit design and electrical engineering Experience with electronics testing and quality assurance Proficient in using software tools for schematic capt

Design Engineer at Infineon Bangalore

  Hello Dear Readers, Currently at Infineon Bangalore vacancy for the Design Engineer role. Design analog and mixed-signal modules in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; In your new role you will: Design analog and mixed-signal modules  in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; Design and verify pre-silicon analog/mixed-signal integrated circuit blocks, including incorporating features for testing and quality assurance, and providing support for top-level integration; Assist in defining the requirements  for analog and mixed-signal blocks,aligning them with IP Module architecture, and ensuring compliance with requirements through documentation; Estimate effort and planning design work packages to meet project milestones; Provide essential support to physical design engineers, post-sil

R&D Intern (Electronics Engineering) at Greaves Electric Mobility

Hello Dear Readers, Currently, at Greaves Electric Mobility vacancy for an R&D Intern (Electronics Engineering) role. At Greaves Electric Mobility, we build products and solutions that are designed to democratize smart and sustainable mobility and do our bit to heal the Planet. Backed by the 164 year engineering legacy of Greaves, our portfolio of electric two and three wheelers are made in India at manufacturing sites across Tamil Nadu, Telangana and Uttar Pradesh. Key Responsibilities: Collaborate with experienced engineers in the research and development of electric mobility technologies. Participate in the design, prototyping, and testing of electronic and electrical systems for electric vehicles. Contribute to the analysis and improvement of automotive electrical systems, ensuring compliance with industry standards. Assist in troubleshooting and problem-solving activities related to electric vehicle components. Stay updated on the latest advancements in the electric mobility s