Skip to main content

Control Systems - Steady State Errors

The deviation of the output of control system from desired response during steady state is known as steady state error. It is represented as . We can find steady state error using the final value theorem as follows.

Where,
E(s) is the Laplace transform of the error signal, e(t)
Let us discuss how to find steady state errors for unity feedback and non-unity feedback control systems one by one.

Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity negative feedback.
Where,
  • R(s) is the Laplace transform of the reference Input signal r(t)
  • C(s) is the Laplace transform of the output signal c(t)
We know the transfer function of the unity negative feedback closed loop control system as


The output of the summing point is -

Substitute C(s) value in the above equation.



Substitute E(s) value in the steady state error formula

The following table shows the steady state errors and the error constants for standard input signals like unit step, unit ramp & unit parabolic signals.
Input signalSteady state error essError constant
unit step signal
11+kp
unit ramp signal
1Kv
unit parabolic signal
1Ka
Where, KpKv and Ka are position error constant, velocity error constant and acceleration error constant respectively.
Note − If any of the above input signals has the amplitude other than unity, then multiply corresponding steady state error with that amplitude.
Note − We can’t define the steady state error for the unit impulse signal because, it exists only at origin. So, we can’t compare the impulse response with the unit impulse input as t denotes infinity.

Example

Let us find the steady state error for an input signal of unity negative feedback control system with 
The given input signal is a combination of three signals step, ramp and parabolic. The following table shows the error constants and steady state error values for these three signals.
Input signalError constantSteady state error
r1(t)=5u(t)
r2(t)=2tu(t)
r3(t)=t22u(t)
We will get the overall steady state error, by adding the above three steady state errors.


Therefore, we got the steady state error ess as 1 for this example.

Steady State Errors for Non-Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having nonunity negative feedback.
We can find the steady state errors only for the unity feedback systems. So, we have to convert the non-unity feedback system into unity feedback system. For this, include one unity positive feedback path and one unity negative feedback path in the above block diagram. The new block diagram looks like as shown below.
Simplify the above block diagram by keeping the unity negative feedback as it is. The following is the simplified block diagram.
This block diagram resembles the block diagram of the unity negative feedback closed loop control system. Here, the single block is having the transfer function G(s)1+G(s)H(s)G(s) instead of G(s). You can now calculate the steady state errors by using steady state error formula given for the unity negative feedback systems.
Note − It is meaningless to find the steady state errors for unstable closed loop systems. So, we have to calculate the steady state errors only for closed loop stable systems. This means we need to check whether the control system is stable or not before finding the steady state errors.

Comments

Popular posts from this blog

Design Engineer at Infineon Bangalore

  Hello Dear Readers, Currently at Infineon Bangalore vacancy for the Design Engineer role. Design analog and mixed-signal modules in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; In your new role you will: Design analog and mixed-signal modules  in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; Design and verify pre-silicon analog/mixed-signal integrated circuit blocks, including incorporating features for testing and quality assurance, and providing support for top-level integration; Assist in defining the requirements  for analog and mixed-signal blocks,aligning them with IP Module architecture, and ensuring compliance with requirements through documentation; Estimate effort and planning design work packages to meet project milestones; Provide essential support to physical design ...

Engineer II - Analog Design Engineering at Microchip

Hello Dear Readers,   Currently at Microchip  vacancy for Engineer II - Analog Design Engineering role. Job Description: The Mixed Signal Development Group is responsible for delivering analog, digital and mixed-signal IP to divisions within Microchip. We work with leading edge CMOS processes to produce analog integrated circuits for wireline applications. From 112Gb/s+ SERDES to high-speed FEC engines, we enable technology that allows Microchip’s products to interface to the outside world.  Job Descriptions: As a member of the Mixed-Signal Development Group, the candidate will be supervised by a team leader/manager, and be engaged in the design of SERDES/DSP blocks, and other high-speed Digital Signal Processing blocks. This will involve taking a design from initial concept to production form. Throughout you will be mentored and coached by experienced engineers and be exposed to Microchip's Best-In-Class engineering practices. Job Responsibilities: Ramping up o...

Analog Design Engineer II at onsemi

Hello Dear Readers,   Currently at onsemi  vacancy for  Analog Design  Engineer II role. JOB DESCRIPTION: An analog design engineer is expected to quickly take an analog design block through all phases of the development process, including design, simulation, and supervision of the layout/verification processes and evaluation/debug of silicon samples. A Senior Analog IC Design Engineer will be responsible for individual block designs using CMOS process. That person will work with the latest Cadence analogue design tools (Virtuoso Composer, Verilog) Spectre and appropriate PC-based tools (MATLAB). The nature of the circuits is Mixed Signal involving blocks such as switched capacitor amplifiers, data converters, charge pumps, references, voltage buffers, IO circuits and digital building blocks. QUALIFICATIONS: Analog engineer is expected to have PhD (no experience) or master’s degree in field of Electrical Engineering/VLSI/Electronics with 0-2 years of experience and w...