Skip to main content

different types of the internetworking devices

The operation of devices is related to different layers as illustrated below:

Repeaters:
  • The repeater operates in the physical layer.
  • These are analog devices that work with signals on the cables to which they are connected.
  • A signal appearing on one cable is regenerated and put out on another cable. Hence it extends the physical length of LAN.
  • Repeaters do not understand frames, packets or headers. They understand the symbols that encode bit as volts.
  • Classic Ethernet, for example, was designed to allow four repeaters that would boost the signal to extend the maximum cable length from 500 meters to 2500 meters.
Hub:
  • A hub has a number of input lines that it joins electrically. Active hub and passive hub are two types of hubs.
  • Frames arriving on any of the lines are sent out on all the others. It is broadcast device. If two frames arrive at the same time, they will collide, just as on a coaxial cable.
  • All the lines coming into a hub must operate at the same speed. Hubs differ from repeaters in that they do not boost the incoming signals and are designed for multiple input lines, but the differences are slight.
  • Like repeaters, hubs are physical layer devices that do not examine the link layer addresses or use them in any way. It is not an intelligent device.
Bridge:
  • A bridge connects two or more LANs. It operates at data link layer.
  • Like a hub, a modern bridge has multiple ports, usually enough for 4 to 48 input lines of a certain type. Unlike in a hub, each port is isolated to be its own collision domain.
  • When a frame arrives, the bridge extracts the destination address (for Ethernet, it is 48 bit) from the frame header and looks it up in a table to see where to send the frame.
  • The bridge only outputs the frame on the port where it is needed and can forward multiple frames at the same time.
  • Filtering, forwarding and blocking of frames are functions of bridges.
  • Bridges offer much better performance than hubs and the isolation between bridge ports also means that the input lines may run at different speeds, possibly even with different network types. A common example is a bridge with ports that connect to 10-, 100-, and 1000-Mbps Ethernet.
  • Buffering within the bridge is needed to accept a frame on one port and transmit the frame out on a different port.
  • Bridges were originally intended to be able to join different kinds of LANs, for example, an Ethernet and a Token Ring LAN. However, this never worked well because of differences between the LANs such as frame formats, maximum frame lengths, security and Quality of service.
Switch:
  • Switches are modern bridges by another name. It acts as multiport bridge to connect devices or segments in a LAN. It operates at data link layer.
  • It is point to point device.
  • It is an intelligent device. It uses switching table to find the correct destination.
  • Switches are of two types:
i. Store-and-forward switch: It stores the frame in the input buffer until the whole packet has arrived.
ii. Cut-through switch: It forwards the packet to the output buffer as soon as the destination address is received.
  • Also there are layer 2 (bridge) and layer 3 switches (kind of router). It is sophisticated and expensive device.
Router:
  • Routers are devices that connect two or more networks. It operates at network layer.
  • They consist of a combination of hardware and software.
  • The hardware can be a network server, a separate computer or a special device. The hardware includes the physical interfaces to the various networks in the internetwork.
  • These interfaces can be Token Ring, Ethernet, T1, Frame Relay, ATM or any other technology.
  • The software in a router are the operating system and the routing protocol. Management software can also be used.
  • Routers use logical and physical addressing to connect two or more logically separate networks.
  • The network address allows routers to calculate the optimal path to a workstation or computer.
  • The two methods of route discovery are Distance vector routing and Link state routing.

Comments

Popular posts from this blog

Design Engineer at Infineon Bangalore

  Hello Dear Readers, Currently at Infineon Bangalore vacancy for the Design Engineer role. Design analog and mixed-signal modules in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; In your new role you will: Design analog and mixed-signal modules  in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; Design and verify pre-silicon analog/mixed-signal integrated circuit blocks, including incorporating features for testing and quality assurance, and providing support for top-level integration; Assist in defining the requirements  for analog and mixed-signal blocks,aligning them with IP Module architecture, and ensuring compliance with requirements through documentation; Estimate effort and planning design work packages to meet project milestones; Provide essential support to physical design ...

Engineer II - Analog Design Engineering at Microchip

Hello Dear Readers,   Currently at Microchip  vacancy for Engineer II - Analog Design Engineering role. Job Description: The Mixed Signal Development Group is responsible for delivering analog, digital and mixed-signal IP to divisions within Microchip. We work with leading edge CMOS processes to produce analog integrated circuits for wireline applications. From 112Gb/s+ SERDES to high-speed FEC engines, we enable technology that allows Microchip’s products to interface to the outside world.  Job Descriptions: As a member of the Mixed-Signal Development Group, the candidate will be supervised by a team leader/manager, and be engaged in the design of SERDES/DSP blocks, and other high-speed Digital Signal Processing blocks. This will involve taking a design from initial concept to production form. Throughout you will be mentored and coached by experienced engineers and be exposed to Microchip's Best-In-Class engineering practices. Job Responsibilities: Ramping up o...

Analog Design Engineer II at onsemi

Hello Dear Readers,   Currently at onsemi  vacancy for  Analog Design  Engineer II role. JOB DESCRIPTION: An analog design engineer is expected to quickly take an analog design block through all phases of the development process, including design, simulation, and supervision of the layout/verification processes and evaluation/debug of silicon samples. A Senior Analog IC Design Engineer will be responsible for individual block designs using CMOS process. That person will work with the latest Cadence analogue design tools (Virtuoso Composer, Verilog) Spectre and appropriate PC-based tools (MATLAB). The nature of the circuits is Mixed Signal involving blocks such as switched capacitor amplifiers, data converters, charge pumps, references, voltage buffers, IO circuits and digital building blocks. QUALIFICATIONS: Analog engineer is expected to have PhD (no experience) or master’s degree in field of Electrical Engineering/VLSI/Electronics with 0-2 years of experience and w...