Skip to main content

RAKE receiver in CDMA system

  1. Transmitted signal is received at receiver as time delayed multiple versions of transmitted signal due to propagation delay. RAKE receiver combines all multipath components of original transmitted signal in order to improve signal to noise ratio at receiver. It provides separate correlation receivers for each multipath component to combine all multipath components.
  2. RAKE receiver is diversity receiver designed for CDMA, where the diversity is provided by the fact that the multipath components are practically uncorrelated from one another when their relative propagation delays exceed a chip period.
  3. A RAKE receiver utilizes multiple correlators to separately detect the M strongest multipath components. The outputs of each correlator are weighted to provide a better estimate of the transmitted signal than is provided by a single component. Demodulation and bit decision is based on weighted outputs of the M correlators.
  4. Basic idea of RAKE receiver was proposed by Price and Green. In outdoor environments, the delay between multipath components is usually large and, if the chip rate is properly selected the low autocorrelation properties of CDMA spreading sequence can assure that multipath components will appear nearly uncorrelated with each other.
  5. If only one correlator is used the receiver, once the output of the single correlator is corrupted by fading, the receiver cannot correct the value. Bit decision based on only a single correlation may produce a large bit error rate. In RAKE receiver, if the output from one correlator is corrupted by fading, other signals can be used to recover the original signal and corrupted signal is not counted through weighing process. Decision based on the combination of the M separate decision statistics offered by the RAKE provides a form of diversity which can overcome fading and thus improve CDMA reception.
  1. The M decision statistics are weighted to form an overall decision statistics as shown in above figure. The outputs of the M correlators are denoted by Z1,Z2, and . They are weighted by Î±1,α2, and respectively. The weighting coefficients are based on the power or the SNR from each correlator output. If the power or SNR is small out of a particular correlator, it will be assigned a small weighting factor. In case of a maximal ratio combining diversity scheme, the overall signal Z` is given by,


The weighting coefficients are normalized to the output signal power of the correlator in such a way that coefficients sum to unity.


Choosing weighting coefficient based on actual outputs of correlators yields good RAKE performance.

Comments

Popular posts from this blog

Design Engineer at Infineon Bangalore

  Hello Dear Readers, Currently at Infineon Bangalore vacancy for the Design Engineer role. Design analog and mixed-signal modules in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; In your new role you will: Design analog and mixed-signal modules  in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; Design and verify pre-silicon analog/mixed-signal integrated circuit blocks, including incorporating features for testing and quality assurance, and providing support for top-level integration; Assist in defining the requirements  for analog and mixed-signal blocks,aligning them with IP Module architecture, and ensuring compliance with requirements through documentation; Estimate effort and planning design work packages to meet project milestones; Provide essential support to physical design ...

Engineer II - Analog Design Engineering at Microchip

Hello Dear Readers,   Currently at Microchip  vacancy for Engineer II - Analog Design Engineering role. Job Description: The Mixed Signal Development Group is responsible for delivering analog, digital and mixed-signal IP to divisions within Microchip. We work with leading edge CMOS processes to produce analog integrated circuits for wireline applications. From 112Gb/s+ SERDES to high-speed FEC engines, we enable technology that allows Microchip’s products to interface to the outside world.  Job Descriptions: As a member of the Mixed-Signal Development Group, the candidate will be supervised by a team leader/manager, and be engaged in the design of SERDES/DSP blocks, and other high-speed Digital Signal Processing blocks. This will involve taking a design from initial concept to production form. Throughout you will be mentored and coached by experienced engineers and be exposed to Microchip's Best-In-Class engineering practices. Job Responsibilities: Ramping up o...

Analog Design Engineer II at onsemi

Hello Dear Readers,   Currently at onsemi  vacancy for  Analog Design  Engineer II role. JOB DESCRIPTION: An analog design engineer is expected to quickly take an analog design block through all phases of the development process, including design, simulation, and supervision of the layout/verification processes and evaluation/debug of silicon samples. A Senior Analog IC Design Engineer will be responsible for individual block designs using CMOS process. That person will work with the latest Cadence analogue design tools (Virtuoso Composer, Verilog) Spectre and appropriate PC-based tools (MATLAB). The nature of the circuits is Mixed Signal involving blocks such as switched capacitor amplifiers, data converters, charge pumps, references, voltage buffers, IO circuits and digital building blocks. QUALIFICATIONS: Analog engineer is expected to have PhD (no experience) or master’s degree in field of Electrical Engineering/VLSI/Electronics with 0-2 years of experience and w...