Skip to main content

Satellite TV System

Satellite TV Systems are planned to broadcast directly to home TV receivers, it takes place in the Ku (12-GHz) band. This service is known as direct broadcast satellite (DBS) service. There is some variation in the frequency bands assigned to different geographic regions.
  • The comparatively large satellite receiving dishes [ranging in diameter from about 1.83 m (6 ft) to about 3-m (10 ft) in some locations], which may be seen in some “backyards” are used to receive downlink TV signals at C band (4 GHz).
  • The major differences between the Ku-band and the C-band receive only systems lies in the frequency of operation of the outdoor unit and the fact that satellites intended for DBS have much higher equivalent isotropic radiated power (EIRP), As already mentioned C-band antennas are considerably larger than DBS antennas.
  • For clarity, only the Ku-band system is described here. Fig below shows the main units in a home terminal DBS TV receiving system. Although there will be variations from system to system, the diagram covers the basic concept for analog [frequency modulated (FM)] TV.
  • Direct-to-home digital TV, which is well on the way to replacing analog systems. However, the outdoor unit is 



Outdoor Unit:
  • This consists of a receiving antenna feeding directly into a low-noise amplifier/converter combination. A parabolic reflector is generally used, with the receiving horn mounted at the focus.
  • A common design is to have the focus directly in front of the reflector, a higher-gain receiving antenna is not needed because the DBS operate at a much higher EIRP.
  • The downlink frequency band of 12.2 to 12.7 GHz spans a range of 500 MHz, which accommodates 32 TV/FM channels, each of which is 24-MHz wide. Obviously, some overlap occurs between channels, but these are alternately polarized left-hand circular (LHC) and right-hand circular (RHC) or vertical/horizontal, to reduce interference to acceptable levels. This is referred to as polarization interleaving.
  • The receiving horn feeds into a low-noise converter (LNC) or possibly a combination unit consisting of a low-noise amplifier (LNA) followed by a converter. The combination is referred to as an LNB, for low-noise block. The LNB provides gain for the broadband 12-GHz signal and then converts the signal to a lower frequency range so that a low-cost coaxial cable can be used as feeder to the indoor unit.
  • The low-noise amplification must be provided at the cable input in order to maintain a satisfactory signal-to-noise ratio. An LNA at the indoor end of the cable would be of little use, because it would also amplify the cable thermal noise.
Indoor unit:
  • The signal fed to the indoor unit is normally a wideband signal covering the range 950 to 1450 MHz. This is amplified and passed to a tracking filter which selects the desired channel, as shown in Fig.
  • As previously mentioned, polarization interleaving is used, and only half the 32 channels will be present at the input of the indoor unit for any one setting of the antenna polarizer. This eases the job of the tracking filter, since alternate channels are well separated in frequency.
  • The selected channel is again down converted, this time from the 950-to 1450-MHz range to a fixed intermediate frequency, usually 70 MHz although other values in the very high frequency (VHF) range are also used.
  • The 70-MHz amplifier amplifies the signal up to the levels required for demodulation. A major difference between DBS TV and conventional TV is that with DBS, frequency modulation is used, whereas with conventional TV, amplitude modulation in the form of vestigial single sideband (VSSB) is used.
  • The 70-MHz, FM intermediate frequency (IF) carrier therefore must be demodulated, and the baseband information used to generate a VSSB signal which is fed into one of the VHF/UHF channels of a standard TV set.

Comments

Popular posts from this blog

Electronic Engineer at Thinture Technologies Pvt. Ltd

Hello Dear Readers, Currently, at Thinture Technologies Pvt. Ltd vacancy for Electronic Engineer role. Thinture Technologies Pvt. Ltd. is a vehicle control systems manufacturer, with a primary focus on road speed limitation and GPS-based tracking systems. All of our products are designed in-house from basic circuit designing to firmware, algorithm to PCB designing, online software platforms to mechanical assembly drawings, and standard operating procedures for aftermarket usage. Role Description: This is a full-time on-site role for an Electronic Engineer located in Bengaluru. The Electronic Engineer will be responsible for the day-to-day tasks associated with electronic engineering, including electronics, electrical engineering, circuit design, testing, and more. Qualifications: Strong electronic engineering skills Sound knowledge of circuit design and electrical engineering Experience with electronics testing and quality assurance Proficient in using software tools for schematic capt

R&D Intern (Electronics Engineering) at Greaves Electric Mobility

Hello Dear Readers, Currently, at Greaves Electric Mobility vacancy for an R&D Intern (Electronics Engineering) role. At Greaves Electric Mobility, we build products and solutions that are designed to democratize smart and sustainable mobility and do our bit to heal the Planet. Backed by the 164 year engineering legacy of Greaves, our portfolio of electric two and three wheelers are made in India at manufacturing sites across Tamil Nadu, Telangana and Uttar Pradesh. Key Responsibilities: Collaborate with experienced engineers in the research and development of electric mobility technologies. Participate in the design, prototyping, and testing of electronic and electrical systems for electric vehicles. Contribute to the analysis and improvement of automotive electrical systems, ensuring compliance with industry standards. Assist in troubleshooting and problem-solving activities related to electric vehicle components. Stay updated on the latest advancements in the electric mobility s

Hardware Design Engineer at TSC Tech Labs

  Hello Dear Readers, Currently, at TSC Tech Labs  vacancy for a Hardware Design Engineer role. Company Description: TSC Tech Labs is a Space and Defence Startup based in Bengaluru. The company has a legacy of developing three Satellites with Space Heritage and holds five active Defence Contracts with the Indian Navy. Role Description: This is a Senior Hardware Design Engineer role and is a full-time on-site position located in Bengaluru. The Senior Hardware Design Engineer will be responsible for designing and developing electronics hardware, circuit design, hardware architecture and hardware development for satellite and defense systems. Responsibilities: Review and understand electrical schematic designs Perform design reviews with other team members Perform layout design based on these schematic designs, complying with product requirements Close collaboration with other project members (system, mechanical, hardware, and firmware engineers, etc.) Prepare PCB/PCBA production document