Skip to main content

Tutorial: Antenna Gain and Directivity

RF antennas or aerials do not radiate equally in all directions. It is found that any realisable RF antenna design will radiate more in some directions than others. The actual pattern is dependent upon the type of antenna design, its size, the environment and a variety of other factors. This directional pattern can be used to ensure that the power radiated is focused in the desired directions.
It is normal to refer to the directional patterns and gain in terms of the transmitted signal. It is often easier to visualise the RF antenna is terms of its radiated power, however the antenna performs in an exactly equivalent manner for reception, having identical figures and specifications.

Directivity

The directivity of an antenna is the ratio of the maximum power density P(θ,φ)max to its average value over a sphere as observed in the far field of an antenna.
It is a dimensionless ratio ≥ 1. The average power density over a sphere is given by
So, the directivity,
The numerical value of D always lies between 1 and ∞. The idealized isotropic antenna radiates equally in all the directions, so its beam area ΩA = 4Ï€ sr.

This is the lowest possible directivity (D = 1). All actual antennas have directivities greater than 1 (D > 1).

Antenna Gain

In electromagnetics, an antenna’s power gain or simply gain is a key performance number which combines the antenna’s directivity and electrical efficiency. As a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction. As a receiving antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, “gain” is understood to refer to the peak value of the gain. A plot of the gain as a function of direction is called the radiation pattern.
Gain is related to directivity with antenna efficiency factor as:
k or η: antenna efficiency factor (0 ≤ k ≤ 1), dimensionless . If k or Î· = 1, i.e. for a lossless antenna, .In practice, gain is always less than the directivity D.
Gain can be of following types:
Power Gain (Gp)
Directive Gain (Gd)
  1. Power Gain (Gp): It is the ratio of radiation intensity in a given direction to the average total input power.
Total input power PT = Pr + Pl
Pr: Radiated power
Pl: Ohmic losses in antenna
2. Directive Gain (Gd): It is the ratio of radiation intensity in a particular direction to the average radiated power.
Gd does not depend upon the power input to the antenna & its ohmic losses .
The maximum value of directive gain is the directivity D of the antenna.
Also,
η: Efficiency factor which lies between 0 to 1

Comments

Popular posts from this blog

Electronic Engineer at Thinture Technologies Pvt. Ltd

Hello Dear Readers, Currently, at Thinture Technologies Pvt. Ltd vacancy for Electronic Engineer role. Thinture Technologies Pvt. Ltd. is a vehicle control systems manufacturer, with a primary focus on road speed limitation and GPS-based tracking systems. All of our products are designed in-house from basic circuit designing to firmware, algorithm to PCB designing, online software platforms to mechanical assembly drawings, and standard operating procedures for aftermarket usage. Role Description: This is a full-time on-site role for an Electronic Engineer located in Bengaluru. The Electronic Engineer will be responsible for the day-to-day tasks associated with electronic engineering, including electronics, electrical engineering, circuit design, testing, and more. Qualifications: Strong electronic engineering skills Sound knowledge of circuit design and electrical engineering Experience with electronics testing and quality assurance Proficient in using software tools for schematic capt

Design Engineer at Infineon Bangalore

  Hello Dear Readers, Currently at Infineon Bangalore vacancy for the Design Engineer role. Design analog and mixed-signal modules in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; In your new role you will: Design analog and mixed-signal modules  in CMOS and Smart PowerTechnologies, with a particular focus on achieving high-efficiency power conversion for applications using GaN devices; Design and verify pre-silicon analog/mixed-signal integrated circuit blocks, including incorporating features for testing and quality assurance, and providing support for top-level integration; Assist in defining the requirements  for analog and mixed-signal blocks,aligning them with IP Module architecture, and ensuring compliance with requirements through documentation; Estimate effort and planning design work packages to meet project milestones; Provide essential support to physical design engineers, post-sil

R&D Intern (Electronics Engineering) at Greaves Electric Mobility

Hello Dear Readers, Currently, at Greaves Electric Mobility vacancy for an R&D Intern (Electronics Engineering) role. At Greaves Electric Mobility, we build products and solutions that are designed to democratize smart and sustainable mobility and do our bit to heal the Planet. Backed by the 164 year engineering legacy of Greaves, our portfolio of electric two and three wheelers are made in India at manufacturing sites across Tamil Nadu, Telangana and Uttar Pradesh. Key Responsibilities: Collaborate with experienced engineers in the research and development of electric mobility technologies. Participate in the design, prototyping, and testing of electronic and electrical systems for electric vehicles. Contribute to the analysis and improvement of automotive electrical systems, ensuring compliance with industry standards. Assist in troubleshooting and problem-solving activities related to electric vehicle components. Stay updated on the latest advancements in the electric mobility s